Data quality matters when building and refining a Classification Model

In the world of machine learning, data takes centre stage. It’s often said that data is the key to success. In this blog post, we emphasise the significance of data, especially when building a comment classification model. We will delve into how data quality, quantity, and biases significantly influence machine learning model performance. Additionally, we’ll explore techniques like undersampling as […]

Build a semantic search tool using FAISS

This post provides an overview of implementing semantic search. Why? Because too often, we notice testers skip testing more complex features like autocomplete. This might be ok in most applications. But in domain specific applications, testing autocomplete capabilities of the product is important. Since testers can benefit from understanding implementation details, in this post, we will look at how autocomplete […]

Robustness Testing of Machine Learning Models

In the world of machine learning, assessing a model’s performance under real-world conditions is important to ensure its reliability and robustness. Real-world data is usually not perfect, it may contain messy data or data with noise, outliers, and variations. During model training, these types of data could be limited, and the model may not have received sufficient training to handle […]

Context-based question answering using LLM

Companies are going to want to query their own internal documents – especially with the rise of LLMs and improvements in AI. Qxf2 has already heard of several CEOs that want to use AI/ML models to glean insights from internal knowledge stores. What does this mean for a tester? Well, you can expect to test such systems in the coming […]